STEPS Toward Expressive Programming Systems,
2010 Progress Report Submitted to the National
Science Foundation (NSF) October 2010

This material is based upon work supported in part
by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

VPRI Technical Report TR-2010-004

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

NSF Award: 0639876
Year 4 Annual Report: October 2010
STEPS Toward Expressive Programming Systems

Viewpoints Research Institute, Glendale CA

Important Note For Viewing The PDF Of This Report

We have noticed that Adobe Reader and Acrobat do not do the best
rendering of scaled pictures. Try different magnifications (e.g. 118%)
to find the best scale. Apple Preview does a better job.

Table Of Contents

STEPS For The General Public 2
STEPS Project Introduction 3
STEPS In 2010 5
The “Frank” Personal Computing System 5
The Parts Of Frank 7
1. DBjr 7

a. User Interface Approach 9

b. Some of the Document Styles We've Made 11

2. LWorld 17

3. Gezira/Nile 18

4. NotSqueak 20

5. Networking 20

6. OMeta 22

7. Nothing 22
2010 STEPS Experiments And Papers 23
Training and Development 26
Outreach Activities 26
References 27
Appendix 1: Nothing Grammar in OMeta 28
Appendix 2: A Copying Garbage Collector in Nothing 30

VPRI Technical Report TR-2010-004

A new requirement for NSF reports is to include a few jargon-free paragraphs to help the general public un-

derstand the nature of the research. This seems like a very good idea. Here is our first attempt.

STEPS For The General Public

If computing is important—for daily life, learning, business, national defense, jobs, and
more—then qualitatively advancing computing is extremely important. For example, many
software systems today are made from millions to hundreds of millions of lines of pro-
gram code that is too large, complex and fragile to be improved, fixed, or integrated. (One
hundred million lines of code at 50 lines per page is 5000 books of 400 pages each! This is
beyond human scale.)

What if this could be made literally 1000 times smaller —or more? And made more power-
ful, clear, simple, and robust? This would bring one of the most important technologies of
our time from a state that is almost out of human reach—and dangerously close to being

out of control —back into human scale.

An analogy from daily life is to compare the great pyramid of Giza, which is mostly solid
bricks piled on top of each other with very little usable space inside, to a structure of simi-
lar size made from the same materials, but using the later invention of the arch. The result
would be mostly usable space and requiring roughly 1/1000*" the number of bricks. In oth-

er words, as size and complexity increases, architectural design dominates materials!

The “STEPS Toward Expressive Programming Systems” project is taking the familiar
world of personal computing used by more than a billion people every day—currently re-
quiring hundreds of millions of lines of code to make and sustain—and substantially re-
creating it using new programming techniques and “architectures” in less than 1/1000™
the amount of program code. This is made possible by new advances in design, program-
ming, programming languages, and systems organization whose improvement advances

computing itself.

VPRI Technical Report TR-2010-004

STEPS Project Introduction

The STEPS research project arose as the result of asking embarrassing questions of many systems (includ-
ing our own) such as: “Does this system have way too much code and is messier than our intuition whis-
pers?”. Almost always the answer was “yes!”. We wanted to find ways to write much smaller code, have
it be more understandable and readable, and if possible, to have it be “pretty”, even “beautiful”.

4

Science of Art

Part of our aim is to practice a “science of the artificial” [1], paralleling how natural science seeks to un-
derstand complex phenomena through careful observations leading to theories in the form of “machinery”
(models) — classically using mathematics — that provide understanding by recreating the phenomena and
having the machinery be as simple, powerful and clear as possible. We do the same, but draw our phe-
nomena from artifacts, such as human-made computer systems.

We use many existing and invented forms of mathematics to capture the relationships and make “runable
maths” (forms of the maths which can run on a computer) to dynamically recreate the phenomena.

Art of Design

We balance science with design because the phenomena we generate only has to be like what we study; we
are not reverse engineering. So the “math part” of science is used here to make ideal designs that can be
much simpler than the actual underlying machinery we study while not diluting the quality of the pheno-
mena. We have been struck by how powerfully the careful re-organization of long existing “bricks” can
produce orders of magnitude improvements.

STEPS Aims At “Personal Computing”

STEPS takes as its prime focus the modeling of “personal computing” as most people think of it, limiting
itself to the kinds of user interactions and general applications that are considered “standard”. So: a GUI
of “2D” views of graphical objects, with abilities to make and script and read and send and receive typi-
cal documents, emails and web pages made from text, pictures, graphical objects, spreadsheet cells,
sounds, etc., plus all the development systems and underlying machinery down to typical personal com-
puter hardware.

e Programs and Applications — word processor, spreadsheet, Internet browser, other productivity SW

User Interface and Command Listeners — windows, menus, alerts, scroll bars and other controls, etc.

Graphics and Sound Engine — physical display, sprites, fonts, compositing, rendering, sampling, playing

Systems Services — development system, data base query languages, etc.

Systems Ultilities - file copy, desk accessories, control panels, etc.

Logical Level of OS - e.g. file management, Internet and networking facilities, etc.
e Hardware Level of OS — e.g. memory manager, processes manager, device drivers, etc.

Our aim was not primarily to improve existing designs either for the end-user or at the architectural level,
but quite a bit of this has needed to be done to achieve better results with our goals of “smaller, more un-
derstandable, and pretty”. This creates a bit of an “apples and oranges” problem comparing what we’ve
done with the already existing systems we used as design targets. In some cases we stick with the familiar
— for example, in text editing abilities and conventions. In other areas we completely redesign — for exam-
ple, there is little of merit in the architecture of the web and its browsers — here we want vastly more func-
tionality, convenience and simplicity.

Evaluating STEPS

We set a limit of 20,000 lines of code to express all of the “runable meaning” of personal computing (as

gisted above) “from the end-user down to the metal”, where “runable meaning” means that the system
will run with just this code (but could have added optimizations to make it run faster). In fact we have

added optimizations here and there to make STEPS run acceptably on the typical laptops we use. Cur-

VPRI Technical Report TR-2010-004

rently we include these optimizations in our code counts for simplicity, but technically they are not part
of the 20,000 lines of meaning.

Thus one measure will be what did and did not get accomplished by the end of the project with the
20,000 lines budget. Another measure will be typical lines of code ratios compared to existing systems.
We shoot for factors of 100, 1000, and perhaps the next order of magnitude as well. The basic idea here is
that we are interested in very large qualitative comparisons, not small ones.

Another measure is understandability. Are the designs and their code clear as well as small? Can the sys-
tem be used as a live example of how to do this art? Is it clear enough to bring to mind other, perhaps
better, approaches?

Previous STEPS Results

The first three years were devoted to making much smaller, simpler, and more readable versions of many
of the prime parts of personal computing, including: graphics and sound, viewing/windowing, Uls, text,
composition, cells, TCP/IP, etc. These have turned out well (they are chronicled in previous NSF reports
and in our papers and memos).

For example, essentially all of standard personal computing graphics can be created from scratch in the
Nile language in a little more than 300 lines of code. Nile itself can be made in a little over 100 lines of
code in the OMeta metalanguage, and optimized to run acceptably in real-time (also in OMeta) in another
700 lines. OMeta can be made in itself and optimized in about 100 lines of code.

Parser For Nile Transform ASTs
.[npu'l Ot
Sirggim Stream
Nile Programs to Nile
make Graphics | AsTs _'®
OMetarules OMetarulgs
for for |
Nile ASTs
The two OMeta translators for Nile (as of 2009)
Parser For Ometa Transform ASTs @
Tixpist Owipui
Siregm Stream
OMeta in OMeta SRe @
ASTs
OMetarules OMetarules
for for
OMeta OMeta AST

The two OMeta translators for OMeta (as of 2009)

The results so far show that many individual parts of personal computing can be created and run prag-
matically in smaller amounts of more expressive program code (roughly factors of 100 to 1000 less code).

VPRI Technical Report TR-2010-004

STEPS In 2010

This year has been aimed at “stitching together” the parts we’ve been working on to
function as a kind of “Cute Frankenstein’s Monster”. This will give us a comprehensive
platform to aid thinking. For example, to find better integrations to make the systems
structures more loosely coupled than most personal computing architectures.

The current system—known as “Frank” — is starting to cover a wide territory of the
standard personal computing landscape. Frank is occasionally pretty scary, but is
friendly enough to allow us to make many examples to test the architecture at all levels.

In&Out Document InsertNew [Content({Text)| Shape Script

A o [Palatino Linoype] ¥ [20]¥ [A° a7 ()] |[[o= oc) (s]

F paste - copy - < ~F - . =
= — A ab A E =E =E E BB =
B suecran || B L U we X X Aajm AJ E===EE

edit > letters. | paragraph |

rently we include these optimizations in our code counts for simplicity, but technically they are not part of
the 20,000 lines of meaning,.

Thus one measure will be what did and did not get accomplished by the end of the project with the 20,000
lines budget. Another measure will be typical lines of code ratios compared to existing systems. We shoot
for factors of 100, 1000, and perhaps the next order of magnitude as well. The basic idea here is that we are
interested in very large qualitative comparisons, not small ones.

Another measure is understandability. Are the designs and their code clear as well as small? Can the sys-
tem be used as a live example of how to do this art? Is it clear enough to bring to mind other, perhaps
better, approaches?

Previous STEPS Results

The first three years were devoted to making much smaller, simpler, and more readable versions of many
of the prime parts of personal computing, including: graphics and sound, viewing/windowing, Uls, text,
composition, cells, TCF/IP, etc. These have turned out well (they are chronicled in previous NSF reports
and in our papers and memos).

For example, essentially all of standard personal computing graphics can be created from scratch in the
Nile language in a little more than 300 lines of code. Nile itself can be made in a little over 100 lines of
code in the OMeta metalanguage, and optimized to run acceptably in real-time (also in OMeta) in
an-other 700 lines. OMeta can be made in itself and optimized in about 100 lines of code.

Parser For Nile

Nile Programs 1o vile
‘make Graphics

The two OMeta translators for Nile (as of 2009)

Transform ASTs

Parser For Ometa Transform ASTs

The two OMeta translators for OMeta (as of 2009)

The results so far show that many individual parts of personal computing can be created and run prag-
matically in smaller amounts of more expressive program code (roughly factors of 100 to 1000 less code).

Writing the previous page of this report in Frank, with a “Halloween themed” user interface look

The visual part of personal computing coincides with “desktop publishing” and both of these were origi-
nally invented as the same thing at the same time. The same viewing mechanisms are used, the same dis-
play, compositing and layout mechanisms, etc. For visible objects, Frank uses a “foreground-background”
scheme derived from Hypercard to create both content and its user interface.

The overall user interface scheme is new, but drawn from already invented Uls (particularly a combina-
tion of Etoys and MS Office 2007). This is partly because STEPS is about “personal computing” as users

VPRI Technical Report TR-2010-004

generally see it, and a completely new UI (which we were sorely tempted to design) would make it more
difficult to assess just how much of personal computing is actually subsumed by the STEPS designs.
Frank’s Ul is not just an amalgam or clean up, but has enough new design to make it much easier, com-
prehensive, learnable and useful than its roots.

The Large Scale Architecture

The overall architectural scheme stems from some of the earliest ideas about objects and networks —
where objects were considered to be “software computers” communicating via messages with a very sim-
ilar architecture to the proposed ARPAnet and later Internet. The object system would be a virtual-ARPAnet
that would use the hardware as caches. Interobject messages would span both local and intercomputer
communications. Locality and migration could be used for efficient interobject coordination and for load
balancing.

In the current Frank, only part of this architecture is implemented so far — basically enough to test the
overall design, and to unify and subsume the ideas of files, documents, web-pages, etc. In Frank, there is
one way to find things (they may be cached locally or be stored on other computers), and these “things”
are self-contained encapsulated virtual computers whose contents need not be understood by Frank, but
which can be used by a Frank user, can generate views which Frank can integrate on its desktop, etc.

Design Approach
This time around, in contrast to some of our earlier systems, we decided to try to work with “compelling
examples” from the bottom-up. The examples give rise to mathematical relationships that model the
meanings as elegantly as possible, and then we design and build a programming language — “runable
math” — that is as much like the math as possible, but which will run without having to state much
beyond the math.

The tradeoffs are interesting. It is really liberating to choose and invent paradigms rather than having to
use any particular one as a given. The dues for this freedom are that one is trying to solve problems and
invent and maintain new programming languages and make everything run well and integrate with the
other ways of doing things. We feel this was a very good choice for this project: getting more fluent in
quickly making well designed languages that can be real workhorses has been the key to success so far.

Frank is the next level of architecture for this approach. We were not sure exactly what loose coupling
scheme would work the best (or even if we knew one that would work the best), but STEPS’ small size
made it feasible to suture together a Frank, and then try to see what a more elegant integration scheme
might be. This constitutes a level of recursion in STEPS, where we sometimes have to implement needed
behaviors in order to have enough “phenomena” to guide more elegant mathematical approaches.

@}? p

Frank, coupled with the larger scale Internet wide architecture, is likely to yield real dividends. We ex-
pect that this larger perspective will allow us to replace “the sutures” with a language which “will receive
messages but not have to send them”.

'S
Yo

{

VPRI Technical Report TR-2010-004

The Parts of Frank

Oversimplifying (and not mentioning scaffolding that will be eventually removed), Frank is made from
the following main parts:
1. DBjr — A universal media system inspired in part by Hypercard and Etoys. It serves as the user in-
terface and media: using, making, saving, sending, finding, etc.
2. LWorld —The raw materials to make user-usable systems like DBjr. Includes viewing, event-handling,
scheduling, universal graphic objects, etc.
3. Nile/Gezira —a universal graphics (and sound) processing system for massively parallel processing to
render and composite graphics and sound.
4. NotSqueak —a simple workhorse object-oriented system used for making facilities such as LWorld.
5. Networking —includes facilities for including the Internet as part of the STEPS resources
6. OMeta —a versatile metalanguage translator for matching and transforming many kinds of patterns.
Used for making all of the language systems in STEPS
7. Nothing —a “higher level language with only low level semantics”. This is a highly portable, efficient
universal target for all of the other systems. All machine code generated in STEPS is generated “from
nothing”.
Nile is a little like a “parallel stream-based APL”. NotSqueak is a little like a “Smalltalk with publish and
subscribe”. OMeta is a little like a “BNF that transforms”. Nothing is a little like a “symbolic computer”.
All the languages are made from OMeta, and will be translated into Nothing, whose back-end creates ma-
chine codes.

We will start with what the end-user deals with—the user interface and personal computing “applica-
tions” —and work our way through the current Frank systems organization. Finally we will summarize
some of the many tasks that remain to be done.

1. DBjr

We have made the user experience and “user illusion” to be highly similar to what most users think of as
“personal computing”. One of the main changes is that unnecessary differences between applications that
are almost the same (e.g. such as a “document” and a “presentation”) have been removed as much as
possible. In most personal computing systems, the kind of document you can make in email is different
from the kind you can make in the web browser is different from the kind of document you can make in
the presentation system is different from the kind of document you can make in word processing is dif-
ferent from the kind of document you can make in a desktop publishing app. Besides being annoying,
each one of these systems has a somewhat different user interface to learn. In Frank all these documents
are one kind of document, and these can be “emailed” to others, “posted” on the Internet, printed as
books and brochures, used in presentations, etc.

The document styles we’ve made so far include:

1. Desktop Publishing
Presentations
“Email”
“Web Pages”
“Cells” and “Sheets”
Scripting
7. Data Base
Examples of these will be given in Section 1.b

AN

VPRI Technical Report TR-2010-004

Backgrounds

We have extended Hypercard’s idea of “backgrounds” and DTP’s ideas about “master pages” to every
object in Frank. For documents, this allows a “mood” to be chosen from existing backgrounds for a par-
ticular purpose, from something as simple as personalized stationery to making a presentation or a “web”

page.

tprui nts Research Institute

1209 Grand Central Avenue, Glendale, CA 91201 tel. (818) 332-3001

President

Alan Kay
Executive Director

Kimberly Rose <Date>
Board of Advisors <To>

John Perry Barlow

Gordon Bell

Jerome Bruner <Address>

Vint Cerf

Mihaly Csikszentmihalyi
Richard Dawkins <Body &
Beuy Edwards
Doug Engelbart
Bran Ferren T
Gerhard Fischer Sincerely,
Tim Gallwey
Adele Goldberg
Danny Hillis
Quincy Jones
Leonard Kleinrock

era ayboumne Alan Kay

President

Negroponte
elsom
Seymour Papert

Ken Perlin

David P. Reed
Mitchel Resnick
Paul Saffo

Larry Smarr

Elliot Soloway

But this is also used to make Frank’s user interface. For example, the menu bar is made from a “page”
and the style, coloration, placement of the buttons and readouts are all part of the “background”.

In&Out Document InsertNew [Content(Text) | Shape Script
- - [Patatino Linotype |¥ [10]¥ [A™ ™ (A1)}) s
paste " copy] . S - o
' =S
Sy selectall r;I ==

edit ~| letters | paragraph ~

] U s x, ¥ Aa”_ﬂh A

The “slots to be filled” in a background are processes that work like spreadsheet cells: they actively “look
around” in their environment to find likely objects to bind to. For example, the cells with “Palatino Lino-
type” and size “10” are looking for “information like this” from the current selection. This is a generaliza-
tion of the “Models and Views” architecture from Xerox PARC. Similarly the “buttons” are looking for
the corresponding functional descriptions to fire off when pressed.

More explanation of how this works will be found further ahead in this report.

VPRI Technical Report TR-2010-004

“User interface design is the little things —
the hundreds and hundreds of little things”
—Cliff Shaw

. The first great UI designer
1.a DBjr User Interface Approach

User interface design is what makes personal computing work as well as it does for billions of users, but
despite relative successes it is far from being understood and presented in as simple and comprehensive a
manner as needed. The STEPS project does not have to be original in any aspect of look and feel, but we
have generally taken the tack that being like traditional personal computing Uls when possible will help
comparisons and judgments about how much ground we’ve covered, and each time we can do this we
save ourselves a lot of effort in trying to come up with better solutions.

In&Out Document InsertNew [Content(Text)| Shape Seript

™\ n Y aY
- = Palatino Linotype |V ‘ A A i J (8]
paste copy) -
l;; lect all B J U #he X, x Aaja ﬁ SEES-2 =
L select al - - = = = - = -
edit | letters > paragraph |

Universal menu bar with visible full width “pane” holding “bubbles”. The shaded area at the bottom is the “spill” for more commands

Our current scheme draws from designs at PARC, Mac, MS, Etoys, plus a few new ideas. For example,
we use text editing, viewing, windowing, icons, pop-ups and pull-downs, etc., conventions from PARC; a
top of the screen menu bar idea from the Mac, a visible “menu panel” idea used in MS Office 2007, and
the “category” and “drag and drop menu item ‘tiles’ to scripts” used in Etoys and Scratch. This Ul tries to
make as many options visible as possible, and so is aimed at the casual (but daily) end-user.

We've stayed with many elementary conventions (e.g. those used for editing text) even though there
might be better approaches. We have simplified and eliminated many “almost but not quite the same”
problems by going after a universal document solution to standard personal computing media. On the
one hand, the burden of Ul is lessened because there is just one “idea of document” with the very same
properties no matter how a document is used.

On the other hand, this increases the choices and also the possibilities for confusion. For example, in MS
Word one doesn’t have to worry about using a Word doc as an email doc with the increased UI for deal-
ing with emails, etc. However, if we could work out a simple unified scheme for each “mood” (no “mod-
es”) of document use, then there would be one set of conventions for “saving and sending” and one set of
conventions for “finding and fetching” which would eliminate currently separate modes and categories
for files, folders, emails, web pages, etc.

[In & Out| Document InsertNew Content(Text) Shape Script

“\ “y
find: | | to internet to file reply W
in everything mail my docs internet v to ¥ I forward ¥
again load
find |, send k) reply il
“Finding” includes searching “files”, emails, the Internet, etc. ~ “Sending” includes “saving”, sending emails, posting “web pages”.

The first time around at Xerox PARC, inventing a comprehensive Ul that actually worked for end-users
required by far the most effort and experimentation, and we have little doubt that we will still be tinker-
ing with the STEPS approach to Ul as our research period comes to an end. So far we have found that a
judicious combination of approaches from the original PARC UI, the more recent Etoys Ul and an “office
suite redux” Ul is working pretty well in providing comprehensive coverage for all the “moods” without
adding much burden to any of them, while in the process removing many of the “almost but not quite”
confusions in current day systems.

VPRI Technical Report TR-2010-004

General Approach To The STEPS Ul
1. Browsing and icons — basically: “browsing is a fast way to deal with remembered paths” and “icons
are often more memorable and easier to spot than words”. The learning curve for this breaks down if
there are more than 100 visible items, or if most of the items are hidden below menu levels. This is the
case for this UL So considerable auxiliary work has to be done in the design to allow it to be used by
beginners until the paths and controls become more memorable.

Some of the “how do I ...?” questions can be answered by exploring and trying. Some are answered
by using conventions that are like most personal computing systems (e.g. for copying, cutting and
pasting, icons for formatting, etc.) However, we really want the user to be able to ask questions like
“How can I send (etc) email?” and have the gist of the answer brought to them. Many of these nice-
ties are part of the goals for next year.

2. Universal Document/Media — this has worked out very well with Etoys, and is gestured at in MS and
Open Office (they don’t really do it, but try to have the Uls for their different document types be simi-
lar). We have found that a combination of redesigning the Etoys tools Ul and organizing it sideways
and redesigning the MSO 2007 scheme (which exhibits some similarities, and is kind of like a Mac UI
with full width sticky pulldowns), covers most of the document “moods” that are needed.

We are experimenting with having every aspect of the user experience be in terms of the universal
document idea (including “moods” such as “desktop” and “windows”). The actual underlying sys-
tem is built this way, but sometimes having too much uniformity (e.g. LISP) adds confusion and
“noise” rather than helping. We are interested to see how this works out.

3. Use “video player” approach to getting/hiding tools. Personal computer users are used to showing
their videos full screen but having a “casual mode” switch to showing tools via clicking on the screen
or moving the mouse up to the top of the screen to show a tool bar with a slightly smaller window for
the video. This is different from the much stronger mode in (say) PowerPoint, which sharply distin-
guishes between “presentation” and “construction”. (One could imagine an iPad gesture for this
which distinguishes between casual pan and zoom of the content, and a contraction of the window
view the content is in.) Another wrinkle is that the “tools casual mode” could be an excellent default
for beginners (as it usually is when people first start playing videos on a PC).

4. “No modes” — meaning that “authoring is always on” but perhaps “with fences”. I.e. we have found
with Etoys that always having the ability to e.g. move things around, get viewers, etc., is almost al-
ways a good thing, and that fences — such as “avoid being picked up” are sufficient to keep the con-
tent stable even while allowing it to be edited.

5. Universal UNDO - we use the “Worlds” mechanism to provide not just comprehensive UNDO of all
steps, but to also deal with multiple versions in a variety of ways.

6. Halos — are simpler than in Etoys and provide mostly graphical handles (resizing, corners, rotation,
etc.) The automatic “menu panels” at the top of the desktop are used for the rest of the properties.

7. “Menu Panels” — both “full page” and “individual object” menus kept visible.

8. “Most used” plus “escapes” — this allows a lot of work to be done at the first level of UI, but provides
full access to the (usually too many) features of any modern personal computer application.

9. Contextualized help - is an attempt to do this at least a little better than most current systems do to-
day — a much better version of this should be part of personal computing, but we don’t know of one.

VPRI Technical Report TR-2010-004

1.b DBjr: Some of the document styles we’ve made

1. Desktop Publishing
Here is the “full screen” view of the previous “Page 4” example in the DBjr interface and media system.

rently we include these optimizations in our code counts for simplicity, but technically they are not part of
the 20,000 lines of meaning.

Thus one measure will be what did and did not get accomplished by the end of the project with the 20,000
lines budget. Another measure will be typical lines of code ratios compared to existing systems. We shoot
for factors of 100, 1000, and perhaps the next order of magnitude as well. The basic idea here is that we are
interested in very large qualitative comparisons, not small ones.

Another measure is understandability. Are the designs and their code clear as well as small? Can the sys-
tem be used as a live example of how to do this art? Is it clear enough to bring to mind other, perhaps
better, approaches?

Previous STEPS Results

The first three years were devoted to making much smaller, simpler, and more readable versions of many
of the prime parts of personal computing, including: graphics and sound, viewing/windowing, Uls, text,
composition, cells, TCP/IP, etc. These have turned out well (they are chronicled in previous NSF reports
and in our papers and memaos)

For example, essentially all of standard personal computing graphics can be created from scratch in the
Nile language in a little more than 300 lines of code. Nile itself can be made in a little over 100 lines of
code in the OMeta metalanguage, and optimized to run acceptably in real-time (also in OMeta) in
an-other 700 lines. OMeta can be made in itself and optimized in about 100 lines of code.

: Parser For Nile Transform ASTs ; i ‘\
gt X avaScript
Oup
e e Groson)
(Kﬂo Programs to Nile e
. make Graphics) 4 — asts | [—* AK c)
___,/ T T N k_//
OMetarulfs OMetarulfs Q""M)
for for et
Nile ASTs

The two OMeta translators for Nile (as of 2009)

Parser For Ometa Transform ASTs

ot

(OMes
OMeta in OMela }—% g ‘_.‘%

OMetarules OMetarules
for for
OMeta OMeta AST:

The two OMeta translators for OMeta (as of 2009)

The results so far show that many individual parts of personal computing can be created and run prag-
matically in smaller amounts of more expressive program code (roughly factors of 100 to 1000 less code).

2. Presentations
Making a presentation in STEPS is “not a mode, but a mood”. In other words, much of it is a subset of

making a general document with less connected writing, but making use of dynamic “builds” or “ap-
pearances” of individual objects on each page, and of page turns. So we make a “slide” in the very same
way we make a “page” (they are the same).

The basic user action in giving a presentation is “Next”, and this will turn the page or invoke “builds”
and other effects. The latter in most presentation systems are usually fixed features, but in DBjr we use its
more general scripting system to allow a much wider variety of things that can be done during a presen-
tation. The general scripting approach is discussed in more detail below. Here, we will just gist how this
is used and how it looks when used for presentations.

VPRI Technical Report TR-2010-004

11

Computing is Transforming

Programming is making a machine into another
machine by changing relationships

Here is a typical “slide” in a talk. The elements were brought in one by one, and some of them (such as the titles) were changed on the
fly. The “addition slide rule” is dynamic and can be moved by fingers or the mouse during the talk

In & Out Document Insert New Content{Text)‘L Shape Script

A et | oo Lnonpe 1% [10¥ (& A7 J@) /|52 o) (s)
r paste copy - .—))

------ B 7 Use x x A= 4 EE==8E

Simple Ul Panel for STEPS |7

g selectall
] letters] paragraph]

start

Computing is ... ?

Programming is making a machine into another ol topRuler 8
machine by changing relationships
" di’;i‘ textBoxl sgw

textBox hge

dg loomwork sl!w

jacquardpunchcard S,Hw

cli{l jacquardcards _,;gw

dﬂ jacquardmemoire SHW

I?' 51% go W stop W

The slide in “menu mood”. This is a “mood” because the slide elements are live during the talk. So the change of moods is more like
showing a video and moving from full screen to showing menus without having to stop or click. The “custom animation” for showing
the slide elements in sequence is effected by using the general scripting system of Frank. The script is shown in the right hand pane.

12

VPRI Technical Report TR-2010-004

One of the old time mantras for personal computing is “simple things should be simple, complex things
should be possible”, so the design task here is to not make things more complex than what the user is
already used to. On the other hand, this is a great way to get end-users to write simple programs without
even realizing that they are starting to learn deeper powers of computing.

The “build sequence” (sometimes called “custom animation”) is
just a script that is single stepped by a “next” input from the
presenter (often a mouse click or space bar push).

start

w
The script lines fit very well with the tile design of our scripting aldk_topRuler %,

system. Each tile line has 4 sections: ab textBoxt 8
condition to trigger—object(s) affected—action—modifier v
textBox pide
So a typical script for building the previous slide example dur-
ing a presentation would look like this: cllu

loomwork 8.

And it would be created by clicking on or dragging out tiles jacquardpunchcard slgw

resented in the menu bar and panel.
’ ’ c&l jacquardcards us

c,:’;?‘ jacquardmemoire sgw

3. “Email”
The “email” system in Frank is really a service for sending and receiving any kind of documents so it is
essentially the same as a web search which looks for search keys of the form “To: the user’s name or id”.

In&Out_Document insertNew | Content (Text|_Shape _ Seript
b g = L Palaino Linotype |V [10¥ (A" A™ s
B 7 U e v ms A -

%

I{wpumrr, Research Institute

1209 Grand Central Avenue, Glendale, CA 91201 tel. (818) 3323001

kwpomta Research Institute

1209 Grand Central Avenue, Glendale, CA 91201

September 9, 2010

Prof. Jesus Molina-Garcia
Universidad de Murcia

President

Alan Kay September 9, 2010 30003 Murcia, Spain
Executive Director . . Dear Jesus,

Kimbirty Hoss Prof. Jesus Molina-Garcia R

Universidad de Murcia rlhcd Unl\vcrilty of Mzrc\a l\s nncﬁf Spa\s;s leading Ll\rivcrsvlvtcls,iv:nh

Board of Advis . N - students and researchers from all over the world, all committed to
oba Perry Baslow Afda. Teniente Flomesta, no 5 pursuing learning and rescarch excellence.

Gordon Bell Edif. Convalenencia - - » . cemational —
Jerome Brunce 30003 Murcia, Spain on'the age-food, heath and martime fieldsin the Medierrancan
'\V'"‘“?t:f . - area, as an International Excellence Campus (CEI) with the support

ihaly Csikszentmihalyi of the Spanish government, is very much in keeping with the

Richard Dawkins Dear Jesus, education ang the University of Murcia.

Betty Edwards .)

Doug Engelbart The University of Murcia is one of Spain’s leading universities, with strongly endorse and encourage this proposal!

Coard Fimcer students and researchers from all over the world, all committed to By this letter, 1 would like to support the initiative and express our
. pursuing learning and research excellence. interest and willingness to work together with the UMU to achieve

Y the goals outlined in the proposal.

Adele Goldberg

Qo s The university's project to promote an international campus focused Sincerely,

Tooned Klefarock on the agri-food, health and maritime fields in the Mediterranean

Geraldine Laybourne area, as an International Excellence Campus (CEI) with the support

Marvin Minsky of the Spanish government, is very much in keeping with the AanKay

Nicholas Negroponte education and research strategies of the University of Murcia. President

orcen Nelson

Seymour Papert . . .
Ken Perlin I'strongly endorse and encourage this proposal!

David P. Reed

Mitchel Resnick By this letter, I would like to support the initiative and express our H [1
Pl Saffo interest and willingness to work together with the UMU to achieve Composmg the “letter
Elics Soloway the goals outlined in the proposal.

Sincerely,

New Content (Text) Shape Script
Alan Kay [to internet tofte | reply ¥
President

docs internet v oV forward ¥

= send -

The “letter” T/# Rocoavch TneHita
Sending the “letter” as “email”

Since any Frank document is “sendable” directly as email or a “web page” we can make graphical letterhead stationery and use it
directly to write and send a letter as an email, or it can be directly posted to the “web”.

VPRI Technical Report TR-2010-004

4. “Web Pages”

The web should be a service for locating and making available objects which can be used in a safe manner.

Without taking space to criticize the existing poor design of the web, we have made an alternate web that
supplies more in a safer fashion. The basic problem of approach of the existing web is that the creators
thought web browsers were a kind of application, and that web content would be simple content. A more
fruitful way to look at the first order metes and bounds of a “world wide web” is to think of it as a system
of objects done by many people that somehow has to be run safely and coordinated with other content on
one’s personal computer. This makes it an “Operating System 101” problem (since the main job of a per-
sonal computer operating system is to take unknown content from outside, run it safely, and allow its
outputs (mostly visual and sound) to be coordinated, composited, and accessed in a legible and usable
manner.

We defer more discussion of this architectural issue and solution to later in this report. For now, we can
just say that the equivalent of web content in STEPS is actually treated as an encapsulated virtual ma-
chine on the Internet, and is run in a confined manner. Though it can use STEPS tools, etc,, it is also poss-
ible for the content to have all its own tools, including how it does graphics, and sound. In this case, the
process is simply given user inputs, and a bit-map, etc., to create output on. This output is then taken by
the DBjr UI and coordinated with other views on the display.

For STEPS content, the universal document authoring allows every kind of existing web formatting to be
used, but also allows formatting that is beyond current conventions and HTML.

5. “Cells and Sheets”

Standard “productivity suites” include “spreadsheets” but in a very weak form that has not been mate-
rially improved commercially since the commercial introduction of this very powerful concept. The Xerox
“Analyst” was made in the early 80s for the CIA and NSA by Xerox PARC/XSIS, but the many important
ideas in it were ignored by the mainstream when it was later offered on the market. Some of the Analyst
ideas and new forms of programming were discussed [2] in the early 80s, and a children’s system [3] us-
ing some of these ideas was made a few years later.

The key idea of a spreadsheet cell is to unify computation with display. We can see that a “model” and its
“view” in a Model-View-Controller could be expressed in spreadsheet cell form. The Analyst was the first
spreadsheet design to allow arbitrary models and views in a cell. We can get still more power by loosely
coupling the view to the model (one way could be through using search or publish and subscribe me-
chanisms in the value rule).

View 7
View Ruleﬁ/

Value

U

Value Rule

In STEPs, a value can have more than one view.

View Rule Z

Value

- L 7 /
/~

Value Rule

/

VPRI Technical Report TR-2010-004

14

The simplest use of the generalized cells in STEPS is to make an extended spreadsheet++, where the “++”
includes arbitrary expressions for the value rule e.g. the value rule for cell B6 will cause it to change color
towards red as the expenses are deemed too high. The value rule of cell C6 shows a “thumbs up” image if
the expenses are less than $300.

V) A B C
1 date item amount
2 April 23, 2010 |air fare, southwest 198
3 April 23,2010 |taxi, BUR to AMI 28
4 April 24, 2010 |parking, SJC 30
5| - TOTAL 257
6
&) 6
o2
C6 = self graphicFrom: ((C5 value < 300) ifTrue: ['thumbUp'] ifFalse: ['thumbDown']) N
v A B C
1 date item amount .
2 April 23, 2010 |air fare, southwest 198 A6 = Self graphICFrom: Ifrankl
3 April 23, 2010 |[taxi, BUR to AMI 28
4 April 24, 2010 |parking, SJC 300
5| - TOTAL 527
6

C6 = self graphicFrom: ((C5 value < 300) ifTrue: ['thumbUp'] ifFalse: ['thumbDown'])

Since anything can be used as the value rule for a cell, we can even put in a problem solving system (such
as the Toylog English language version of Prolog discussed in the 2007 report).

But we also use these mechanisms everywhere. For example, the STEPS menus are made from pages
whose background includes buttons, which are views which “look” for the actual methods that are part of
the underlying object. Thus when a particular object is clicked on, it becomes the purview of the Ul menu
system which forms loose couplings between the menu items and the underlying mechanisms.

The retrieval metaphor that characterizes spreadsheet cells can be used to find things and present views of
those things. This is used in windowing, retrieving from the Internet, etc. For example, the “email” inbox
is a spreadsheet cell whose value rule is a pattern that will only match on the end-user’s mail documents,
and whose formatting rule is (usually) “list”.

Generalized spreadsheet cells and ways to program them are wide and varied. This year we have mainly
constructed the general functionality and a few uses. A comprehensive user interface for scripting in gen-
eral and especially for allowing end-users to make wider use of what cells can do is a goal for 2011.

6. Scripting

Right now this is still a “lick and a promise” (the rest is planned for 2011), but we have done part of the
scripting Ul design. This is inspired by the two children’s scripting systems built in Squeak — Etoys and
Scratch — and by several Hypercard ideas. We have been experimenting with tile-based scripting since
our MIT graduate student Mike Travers created Agar, an agent-based, tile-scripted, authoring system for
making behavior creatures for the Vivarium project [4]. These ideas were adapted for Etoys in 1997, and
then adopted by Alice, and later by Scratch. This has generated considerable end-user experience in the
strengths and weaknesses of tile-based scripting systems, and we have tried to maximize the former and
minimize the latter in this design.

VPRI Technical Report TR-2010-004

15

The basic idea here is that many of the properties and behaviors to be dealt with when scripting already
exist in the media part of the Ul For example, the location of a particular object in a document or on the
desktop, or to change the font size or insert a new object or text into text, etc. This can just be dragged out
of the general Ul onto the desktop or into scripts.

Other scripting objects are dragged from several scripting panels that are incorporated into the general
menu interface. The visibility of the scripting elements is a little more like the original Etoys interface
(and like the Scratch interface today). For fun, we have made some Scratch-like tiles to use in this exam-
ple. We expect next year to design tiles that have much of the same tactile impact when picking, dragging
and dropping, but are much easier to read when conglomerated in an actual script.

Scripting is seen out of the corner of the user’s eye in the presentation interface but also in the feedback
pane, which keeps a log of what the user is doing as scripting actions. The basic idea here is that quite a
bit of scripting is a mechanization of actions the user can do, and we endeavor to show these in scripting
terms, and in a way they can be used as scripting elements.

Tile-based scripting is at its best for beginners and small scripts. As a script gets larger, the extra visual
cues that help beginners start to compete with being able to “gist-read” the script for general content. Al-
so, a more fluent scriptwriter can often type faster than finding, dragging and dropping. This leads to a
number of important secondary designs for scripting, that accommodate to the learning of the user.

7. Data Base

As in Hypercard, every page (and in STEPS, every document) is automatically indexed for retrieval. So
every multipage document is already a kind of database. The use of backgrounds, properties and spread-
sheets/cells allow most kinds of enduser databases to be made. (We can also see that this is completely
compatible with the idea of “web pages”.)

Electronic Frontier Foundation (EFF.org)
454 Shotwell Street
San Francisco CA 94110-1914

FPhone: +1 415 436 9333

Fax: +1 415 436 9993
eff.org

"EFF is the leading civil liberties group
defending your rights in the digital
world."

Bloggers' Rights
Privacy

A simple Frank data base that acts like a Rolodex

VPRI Technical Report TR-2010-004

16

2. LWorld

LWorld is the tools framework used to build application and user interface frameworks such as DBjr.

The base object model uses fully reified Announcements for events-notification and the “components”
for the entry object, as described in the previous year's report.

Brokaring Marketplace

for Objects
Viewing Concerns Pondering Foreign
Objects

Useful

"Eye End" of "World End" “E

“viewing of "viewing

telescope” tele¢

Pool of “foreign”
objects

Viewing i

“Hints"

The basic LWorld scheme of loosely coupled interactions and viewing of independent objects

The LWorld framework provides the basis of the event notification and the LBox framework is the graph-
ical application framework on top of it.

One of the major milestones achieved is the full-integration with the Gezira graphics engine. The graphi-
cal aspect of widgets (called Shapes) in the LBox uses the geometry, fill and stroke data that is used by the
Gezira engine. The rendering is done by constructing Gezira pipelines for Boxes in the display tree and
feed the data through the pipelines.

In 2010 the framework has been further extended with new tools:

e The bitmap editor (described in VPRI TR-2010-001 [8]) that explores the practicality of Worlds in an
application with large data.

e Spreadsheets (see the description above). These take advantage of the Announcements event-
mechanism to propagate the recalculation requests. The cells of the table can contain various data
types and expressions.

e Inspectors. An inspector is just the table with cells that are waiting on the target objects particular
value change events. Since the visual representations of cells are just regular LBoxes and are not re-
stricted to the table-like setting, we assembled them with explanation text to make a free-form dy-
namic essay on the object.

¢ A document reader. The EPub parser is written in OMeta and the reader displays the contents

VPRI Technical Report TR-2010-004

e A Shape editor. The Gezira data in a Shape can be interactively edited. Here is how the “Thumbs Up”
in the spreadsheet example was made.

save
quit

new layer
color

gradient

‘. filled

stroked

4 e
"

The “Thumbs Up” icon, and how it is made in the Shape Editor

3. Gezira/ Nile

Gezira is the STEPS graphics system, and Nile is the “runable math” programming language we invented
to express the relationships compactly and run them quickly enough to be useful (see the previous 2009
report to NSF for more details).

Much of the 2010 work with Gezira/Nile has been to complete, reengineer, and integrate.

e This year Gezira/Nile was operationally integrated with the rest of the STEPS system, and is used for
all graphical operations in Frank.

e The meta-compilation of all of the Nile code via OMeta was completed.

¢ Considerable work was done to integrate the Nile facilities into “NotSqueak” so they could be used for
all the viewing and rendering needs of DBjr and LWorlds.

These are all illustrated in the earlier part of this document. A few new features were added as well:

¢ Pen stroking was extended to include different joins and cap types.

e Bilinear and bicubic transformations were added to provide very high quality image (bitmap) scaling.
“Mipmapping” was added to make extreme reductions (e.g. for thumbnails) more legible. Examples of
thumbnailing can be seen on pages 5, 12, and 14.

VPRI Technical Report TR-2010-004

18

o A Gaussian filter was added, especially to make a wide variety of useful soft shadows.

e A new kind of fill that is “transparent and contrastive” has been devised. An example goal here is to
be able to render images over any background and have them be readable without occluding the
background. (This example doesn’t transfer to MS Word very well.)

¢ An experimental trial of massively parallel processing for Nile is in progress.

As with other stream processing languages, Nile programs are implicitly concurrent. Most Nile processes
(previously called "kernels") execute in complete isolation from each other, interacting exclusively
through input and output streams (channels). In addition, the production and processing of stream data

VPRI Technical Report TR-2010-004

19

can happen piecemeal. This strictly defined encapsulation and communication lead naturally to parallel
execution of Nile processes. But besides pipeline-level parallelism, Nile programs also lend themselves to
data-level parallelism. In practice, Nile processes are often stateless. This allows the duplication of
processes to handle different sections of the same stream in parallel.

We are investigating parallel execution of Nile programs on commodity multi-core processors. The Nile
scheduler is currently being adapted to assign processes to hardware threads. The threads communicate
through stream buffers that, once filled, are immediately delivered to a process' "inbox." Once a process
has at least one buffer of input, it is put on a ready queue to be executed by an available thread. This im-
plements pipeline-level parallelism. Data-level parallelism is provided by duplicating stateless processes
when a process' inbox becomes "too full." Furthermore, we will support simultaneous execution of mul-
tiple pipelines, which adds an additional axis of parallelism.

We plan to use our 2D vector graphics renderer as a real world benchmark for our parallelization efforts.
We are optimistic that, given the many deep pipelines and data-parallel processes in the Gezira code base,
there will be much room for parallel execution.

4. NotSqueak

This is a considerable subset of Squeak Smalltalk (without the Squeak libraries and most features) used as
a placeholder object-oriented language to make frameworks for the graphics and document system. Part
of the design of the subset has been done to facilitate bootstrapping the entire top part of Frank over to
the new foundations which are being built in “Nothing” (see section 7 ahead). Another perspective on the
subset was to make it possible to replace the “announcements” loose coupling used in LWorlds with a
more general and comprehensive framework when we understand it better.

NotSqueak’s connection to Squeak has allowed an “intensive care unit” to be made for Frank which al-
lows us to make Frank objects, use the Frank User Interface, employ Frank graphics, etc., without having
to do a complete bootstrap from scratch. This has allowed quite a bit of progress to be made on the design.

EAK 3

2 w3 o fE

"Clear!"
We expect that this scaffolding language will be completely replaced by the end of next year.

5. Networking

STEPS is about the code required to manifest personal computing on a personal computer, and this is the
code that we count. But personal computers are usually connected to networks including the Internet.
Thus we have to make a TCP/IP and other systems to communicate with Internet services. We also need

VPRI Technical Report TR-2010-004

to supply services that are like those available via the Internet (such as the world wide web).

The Web Should Be About Objects (And Especially The Same Objects As Personal Computing)

The web was not thought through as a systems design. DTP already existed with symmetric WYSIWYG
authoring, and related models for hypermedia — such as Hypercard — were already used extensively. The
LOCUS [5] distributed operating system had demonstrated how to make up computations as combina-
tions of virtual machines and to successfully distribute them to multiple heterogeneous platforms with
automatic load balancing, so that computer hardware on the Internet could now simply be used as caches
for a “virtual Internet” of intercommunicating virtual machines.

Once looked at this way, we can readily see that the web browser which is currently an enormous mish-
mash of weak legacy standards approached as an application, could have been “almost nothing” and
much more extensible and powerful if it could have been seen as a kind of operating system, whose job it
is to safely run processes made by others, and to combine and compose the outputs from these processes
at the user level, and to transmit user commands back to them. In other words, the browser should have
been the exact opposite of what it is now.

Similarly, the whole web media could be easily made and more easily authored if it were just the super-
DTP/GUI mentioned above. And, the comprehensive viewing mechanism and distributed process
scheme allows any new media to be invented and integrated (it doesn’t have to be “mashed”!).

“Operating Systems” Should Only Be About Allocating Resources Safely To Cached Objects

Finally, we can see from the above that much of what is in currently operating systems should not be
there. A more “Internet perspective” will encourage distribution and the integration of heterogeneous
elements rather than trying to make a conglomeration of features that is more difficult to integrate.

For example, there is no reason for an OS to contain device drivers - there are too many devices, and all
have their own resources. What is needed is for the devices to furnish their own drivers in a way that can
be handled universally.

There is no reason for an OS to supply a graphics system. This can be distributed to the virtual machines
on the virtual Internet. The “OS” needs to coordinate the results of the distributed loci of functionality, it
doesn’t need to supply resources for them.

What was a mega-monolith quickly sublimates away, and we wind up with a simple plan to run hard-
ware only as a cache for encapsulated message exchanging processes (otherwise known as “real objects”),
some of which are processes that can coordinate views generated by other processes. We do load balanc-
ing (and this can be seen as a next level of semantics of TCP/IP, and part of the same family tree).

This approach gets rid of a lot of needless stuff, but it only helps part way for the large spectrum of func-
tional “applications” needs and possibilities in personal computing. In our project, we don’t have to cope
with this much because STEPS is primarily aimed at the standard productivity suite software — which is
pretty much about making and sending and receiving documents in various ways — and not at the hun-
dreds of thousands of applications that have other aims and are not so document oriented. Not a lot of
functionality needs to be added to the basic “universal documents” to make them behave as word pro-
cessors, DTPs, presentations, graphics editors, email clients, web browsers, spreadsheets, etc., or any
combination. (A separate attack on the “general application making problem” would be a good subject
for a follow-up research project.)

“Architecture Dominates Materials” — “Design Wins”

So, this part of STEPS is not particularly new, but is simply a return to past design insights and prin-
ciples—some more than 40 years old. However, we think these “findings” are still significant results,
partly because STEPS is a “science of design” project, but also as a way of (re)calling attention to the need

VPRI Technical Report TR-2010-004

21

for better more comprehensive design thinking before plunging in willynilly to write random code and
create ungainly non-scalable defacto standards that serve mostly as barriers to progress.

“File Systems”

This year we have implemented enough of the “external network environment” to handle our own filing,
searching, email, and “web” needs. Next year we will implement the “protected address space” architec-
ture that will potentially allow any object done in any fashion to be cached and run safely under STEPS.

6. OMeta

OMeta has been the workhorse of STEPS, and is currently used to make the STEPS languages: Nile,
NotSqueak, Nothing, and itself. It runs on top of Squeak, Javascript, C, and Nothing.

We have not needed to improve it this year, and the main new deployment has been to use it to help
make Nothing (see the next section 7., and Appendix 1), and then bootstrap itself into Nothing (Appendix
2 shows a copying garbage collector that is part of this process). The next task will be to use OMeta to
move Nile from its current main target C to use Nothing as its high performance back end.

“Hey Alex, what did you make progress on today?”
“Oh, Nothing”

7 . N Oth i n gl “Wow, that’s really great!”

“Nothing” is a symbolic computer that is used as the lowest level target for all other “machine code” gener-
ation in STEPS. (“Machine code” here refers to actual machine code for various CPUs, and, for conveni-
ence, we occasionally translate to Smalltalk or C.)

It can be thought of as a higher level language with only low level features—to be looked at by humans
but not to be programmed directly (perhaps occasionally by superhumans).

One of the reasons we decided to insert this extra layer was pedagogical; it provides a “hardware seman-
tics” that will make it much easier for students to trace the chain of meaning down to computer hardware.
The semantics of Nothing are simple, and the translations from Nothing to actual hardware are also sim-
ple enough to allow a backend to be readily understood by a student, and to allow a new backend to be
created by a student.

One pedagogical illustration that we wanted to be very clear is how one can bootstrap from a lower level
of expression to a higher level (in terms of bricks, going from making walls to making arches). By having
Nothing be “almost nothing”, it is easy to show how nicely “bootstrapping upwards” can be done.

We were inspired by two “high level low level” designs from the 1960s: BCPL [6] by Martin Richards,
and by the “elementary notation for algorithms” devised by Niklaus Wirth for implementing and de-
scribing his Euler language [7]. Syntactically Nothing is a little closer to the former, and semantically is a
little closer to the latter.

The grammar for transforming Nothing into ASTs is a very simple 150 lines of OMeta (see Appendix 1).

An example Nothing program to make a copying garbage collector in less than 100 lines of code is shown
in Appendix 2.

Each back-end from ASTs to final target is also implemented in OMeta.

"1t was originally called Ex Nihilo, but this seemed too fancy for this project

VPRI Technical Report TR-2010-004

OMeta is implemented on top of many different languages (Smalltalk, JavaScript, etc.) But in the final
STEPS, it is implemented in terms of Nothing, and this also provides a nice case study of bootstrapping
because it is recursive and requires a virtual machine with a stack. We had a lot of fun doing this because
it echoes one of our favorite papers of all time: Meta II by Val Shorre in 1964, who pioneered this style of
translation, and in his short paper was able to provide three complete working examples — two Algol-like
languages and Meta Il itself, and the virtual machine for Meta I, all done on an 8K 1401!

One of the many benefits of this approach is that it allows us to experiment with “the bottoms” even as
we are implementing and experimenting with “the top”. We can produce different virtual machines for
the various DSLs we have created to try to understand the most fruitful ways to run them efficiently (but
simply). Eventually this will lead (perhaps) to a more consolidated design for the VMs.

The next project is to replace the back-end of the Nile/Gezira graphics engine (which now has both C and
Smalltalk back-ends) with a Nothing back-end, to completely remove all code but ours from the Nile
“chain of meaning.

2010 STEPS Experiments and Papers

Here are three experimental projects done to learn more about several important areas of the STEPS research:
- an experimental high speed universal “speculative programming and undoing” system;
- a metalanguage port of some of our work to the Flash virtual machine; and
-a complete “chain of meaning” from high level to machine code using a single transformation language.

Worlds: Controlling The Scope Of Side Effects [8]
Alex Warth, Yoshiki Ohshima, Ted Kaehler, Alan Kay

This paper introduces worlds, a language construct that reifies the notion of program state and enables
programmers to control the scope of side effects.

The state of an imperative program—e.g., the values stored in global and local variables, arrays, and ob-
jects’” instance variables— changes as its statements are executed. These changes, or side effects, are visi-
ble globally: when one part of the program modifies an object, every other part that holds a reference to
the same object (either directly or indirectly) is also affected.

We investigate this idea by extending both JavaScript and Squeak Smalltalk with support for worlds,
provide examples of some of the interesting idioms this construct makes possible, and formalize the se-
mantics of property/field lookup in the presence of worlds. We also describe an efficient implementation
strategy (used in our Squeak-based prototype), and illustrate the practical benefits of worlds with two
case studies.

Solutions to many problems in computing start with incomplete information and must gather more while
the solution is in progress

An important class of problems have to perform speculations and experiments, often in parallel, to discover
how to proceed. These include classical non-deterministic problems such as certain kinds of parsing,
search and reasoning, dealing with potential and actual error conditions, doing, undoing, and redoing in
user interfaces, supporting multiple forked versions of files and other structures that may need to be both
ramified and retracted, etc. The “need to undo” operates at all levels of scale in computing and goes
beyond simple backtracking to being able to support multiple speculative worldlines

Most of the ploys historically used to deal with “undoing” have been ad hoc and incomplete. For example,
features such as try/catch enable some speculation, but only unwind the stack on failure; side effects are

VPRI Technical Report TR-2010-004

23

not undone automatically. Programmers have little choice but to rely on error-prone idioms such as the

command design pattern. This is analogous to the manual storage management mechanisms found in
low-level languages (e.g., malloc and free in C). In contrast, garbage collection trades a little efficiency for
enormous safety and convenience, and the worlds mechanism we present in this paper provides a similar
service for all levels of “doing-and-undoing.” Web surfing is a useful analogy for thinking about worlds:
during a simple exploration of the web, you might just use the back button, but more complex explora-
tions (speculations) are more easily done with multiple tabs. All the changes you made during your ex-
plorations remain local to the tab that you used, and can be made “global” or not by your choice

This is somewhat similar to transactions, which are another example of a general mechanism that can
handle some of the “computing before committing” problems at hand here. But whereas the purpose of
transactions is to provide a simple model for parallel programming, the goal of worlds is to provide a
clean and flexible mechanism for controlling the scope of side effects. Unlike transactions, worlds are first-
class values and are not tied to any particular control structure—a world can be stored in a variable to be
revisited at a later time. This novel combination of design properties makes worlds more general (albeit

more primitive) than transactions

Tamacola - A Meta Language Kit for the Web [9]

Takashi Yamamiya, Yoshiki Ohshima

Presented at the S3 Conference, Tokyo, Japan, September 2010

Tamacola is a dynamic, self-sustaining meta-language system grounded upon the Tamarin VM.1 Tama-

cola compiles a Scheme-like S-expression language into ActionScript bytecodes, and contains meta-
linguistic features, such as a PEG parser generator and macro system, which make it useful for defining
new languages. In fact, Tamacola is written in itself, using its meta-linguistic features.

Since the Tamarin VM can load ActionScript bytecode files to extend and replace running programs, Ta-
macola can extend itself and define new languages while it is running. Furthermore, since the Tamarin
VM is part of the ubiquitous Adobe Flash player, this self-modification can be accomplished while run-
ning in a web browser, with no extra installation requirement

Objects in Tamacola are intimately tied to their ActionScript counterparts, providing good interoperabili-
ty between Tamacola and the Flash Player. To show that the system is ready for practical use, we used
Tamacola to implement both an interactive programming environment (“Workspace”) and a simple par-

ticle language

COLA Workspace

«|» + = file:///Users/takashi/src/c3/ws/Workspace.htm|

¢ | (Qr Google o

COLA/Flash Workspace

This is a COLA/Flash workspace. You
can evaluate any lisp programs in the
document. Select each expression
below and click [Print It] or [Do It]
button on bottom of the screen.

(+ 3 4)

(print "Helle, World!\n")

/A page may have a hyper link. You use

a jump function to go to another page.

'The [Home] button always let you back

to this page. Select next expression and click [Do It] button.

(jump "Overview.html"™)

‘Home. html

[Back] [Home] [Reload] [Do It] [Print It]

Interactive workspace for presentations and programming
using the Actionscript bytecode engine

VPRI Technical Report TR-2010-004

i

A Adobe Flash Player 10

FM! View Control Help

b
} .
-.F 1
.'rr.a;:() addEventListener(” ‘ﬂ'E:E"ﬂ.E\E :\:el)ﬁ- ., . -
[}

Life Game itrte.i‘cra-lg.

F -
This is the workspace !Jrl‘the Forall .hanglaugé on—?ﬁcolrﬁ_.
‘hb-:. [

I -
N = 100; = o 1I' - bk '{:'
arr = new[N, -y ..i
:0...M, § = vath.flogr (J’aa'ari:m() = 0.5); 'F.-.i’}?llp{ax'h 'ﬁ'
N, 3:0...N] = Mach.flodr (Mabd.radfom() + 0.5); e
step = ction () { -
arr[i:l..N, j:1..N] = arr[i-1, 48] + arr[i- 11-91 i e i-1, 3+ + :
arr[i, j-1] 1[“_‘-.';_4 2 "'0) al&l. 3+1]
arr(itl, j-1] ~'ax J]i_,] 4 + a¥r(itl, g !
FArrayFlip(arr); . L="x,

sallf{a[i, 3] < arr} do {a = (2 3 10) == 3 2 1 : {J® % 10) == 2 2 (a // 10)% 0):}:
FArrayFlip(arr); =
stage(aphica.clear(); -

ge () .grapl (- = LY
stage () .graphics.beginFill (167 11335)
&su-h{a ==1 1 a[i, j] < arr} :1: {[{suqa()!‘;u;‘}u; :ira i*4+240, 3* 3 F 4 »1: I

[|-| [N IH {ll_.- ;

|
| A e | |

[Relcad] [Do It] [Print It]

The Forall language is made in Tamicola, and then is used
to program the game of “Life”

24

PEG-based Transformer Provides Front-, Middle- and Back-end Stages in a Simple Compiler [10]
Tan Piumarta
Presented at the S3 Conference, Tokyo, Japan, September 2010

This paper describes an experiment in compiler construction that uses a single parser to implement each
of the three stages of compilation: source parsing to create an AST, intermediate code generation from the
AST, and machine code generation from the intermediate representation. Compilers are often broken into
three (or more) stages: front-end parsing, one or more middle-end analysis/optimization steps, and back-
end code generation. This separation helps assure simple and understandable transformations between
adjacent stages, that are easy to construct, debug and maintain

A parser is typically generated automatically from a grammar using tools like Yacc or ANTLR. Analysis
and optimization is often performed by tree rewriting—pattern matching to identify a particular subtree
and replacing it with a “better” subtree. The tree rewriter can also be generated from a grammar that de-
scribes output structure (trees) generated for particular statements of an input language (patterns in a
tree). Code generators can be implemented with grammar-driven bottom-up tree rewriting, a well-known
example being the BURG family of code generators. Each stage usually uses a specialized grammar and
parser/generator generator.

Our experiment applies a single parsing mechanism, driven by a uniform grammar to all three compila-
tion stages.

text prefix tree abstract code

-

prefix s-expression tree postfix abstract code 386 assembly

Input pbutput
@ strear] stream
‘IIHIII!IIPAA» - — - —» - — AAA*%'!I!!II!I’

The front end converts a source program (list of characters) into an abstract syntax tree. The middle converts the tree into a program (list of
instructions and operands) for a stack-oriented abstract machine. The back end converts the abstract machine code into concrete assembly
language for the Intel 386. The same grammar and parser implementation is used in the specification and implementation of each stage (from
page 3 of this paper).

A parser has an input stream, a set of rules (generated from an extended PEG) that recognize input struc-
ture and generate output structures, an output stream to collect generated output, and a current result
(semantic value from the most recent expression) that can be read and written within rules describes the
architecture of the compilation chain.

VPRI Technical Report TR-2010-004

25

Training And Development
Daniel Amelang continues as a graduate student at UCSD while working on his PhD thesis on the Gezi-
ra/Nile streaming graphics system at Viewpoints Research.

Outreach Activities

November (4 and 6) 2009, at Keio and Kyoto Universities, Japan

Alan Kay gave a keynote address to Microsoft Research Asia's "Computing in the 21st Century" Confe-
rence. "Three Screens and One Cloud: Rethinking Computing," brought together researchers and scien-
tists to discuss how businesses and consumers take advantage of technologies with different form factors.

March 2010
Alan spoke and participated at the "Computational Thinking Workshop" in Arlington, VA with National
Library of Medicine and DARPA

April 2010
Alan visited CMU and shared STEPS with Ken Koedinger (CMU) Steve Ritter from Carnegie Learning,
and others at CMU.

May 2010
Alan spoke at NYU's "Games for Change" conference hosted and organized by Dr. Ken Perlin and Micro-
soft Corp.

June 2010
Alan visited Dr. David Patterson's lab at UC Berkeley and shared progress on STEPS.

September 2010
Kim Rose co-chaired "S3 - A Workshop on Self-Sustaining Systems" held at University of Tokyo on Sep-
tember 27-28.

Takashi Yamamiya, Yoshiki Ohshima and Ian Piumarta presented papers at the S3 workshop (see in this
report the section “2010 STEPS Experiments and Papers” for more details).

October 2010

Alan Kay gave a lecture at UCLA undergrad computer science students describing the ideas and progress
of STEPS research.

During this program year, Co-PI Daniel Ingalls moved from Sun MicoSystems to SAP Labs. As such SAP
is a new "collaborator or contact" in regard to this research.

VPRI Technical Report TR-2010-004

26

References and Notes

(1]
(2]
[3]

[4]
[5]
[6]

[7]
(8]

(9]

Herb Simon, “The sciences of the artificial”, MIT Press, 3¢ Edition, 1996
Alan Kay, “Computer Software”, Scientific American, Sept 1984

Jay Fenton & Kent Beck, “Playground, an object-oriented simulation system with agent
rules for children of all ages”, ACM OOPSLA Conf 1989

Mike Travers, “Agar, an animal construction kit”, MIT PhD Thesis, 1988
Gerry Popek, et al, “The LOCUS distributed systems architecture”, MIT Press, 1986

Martin Richards, “BCPL: a tool for compiler writing and system programming”, AFIPS
SJCC, 1969

Niklaus Wirth, “Euler: a generalization of algol”, Parts 1 and 2. CACM Jan, Feb 1966

Alex Warth, Yoshiki Ohshima, Ted Kaehler, Alan Kay, “Worlds: Controlling The Scope
Of Side Effects”

Takashi Yamamiya, Yoshiki Ohshima, Tamacola - A Meta Language Kit for the Web,
Workshop on Self-Sustaining Systems (S3), Tokyo, Japan, Sept 2010. ACM Digital Library

Ian Piumarta, PEG-based Transformer Provides Front-, Middle- and Back-end Stages in
a Simple Compiler , Workshop on Self-Sustaining Systems (S3), Tokyo, Japan, Sept 2010.
ACM Digital Library

VPRI Technical Report TR-2010-004

27

http://www.vpri.org/pdf/tr2010003_PEG.pdf
http://portal.acm.org/citation.cfm?id=1476793.1476880&coll=ACM&dl=ACM&CFID=107737681&CFTOKEN=37760600
http://www.vpri.org/pdf/tr2010001_worlds.pdf
http://www.vpri.org/pdf/tr2010001_worlds.pdf
http://www.vpri.org/pdf/tr2010001_worlds.pdf
http://www.vpri.org/pdf/tr2010002_tamacola.pdf
http://www.vpri.org/pdf/tr2010003_PEG.pdf

Appendix 1: Nothing Syntax in OMeta

addExpr

= addExpr:x "+" mulExpr:y -> [{#binOp. '+'. x.
| addExpr:x "-" mulExpr:y -> [{#binOp. '-'. x.
| mulExpr

v}]
v}]

andExpr = andExpr:x "&&" bitOrExpr:y -> [{#binOp. '&&'. x. y}]
|

bitOrExpr

bitAndExpr = bitAndExpr:x "&" egExpr:y -> [{#binOp. '&'. x.

| egExpr

bitOrExpr = bitOrExpr:x "|" bitXorExpr:y -> [{#binOp.

bitXorExpr = bitXorExpr:x """ bitAndExpr:y -> [{#binOp. '~'.

| bitXorExpr

| bitAndExpr
charLit = $' char:c $' -> [#charLit -> c asciiValue]
decl= "name":n "=" expr:v -> [{#decl. n. v}]

"name":n -> [{#decl. n. {#number. 0}}]

egExpr = relExpr:x "==" relExpr:y -> [{#binOp. x. y}1]
| relExpr:x "!=" relExpr:y -> [{#binOp. X. y}1]
| relExpr
expr = OrExpr
field :s :offset = "name":n (":" "number" | [32]):1
[structs at: s]:d
[(d includesKey: n) ifTrue: [self error: 'duplicate field ', n, ' in struct ', s]
[d at: n put: offset -> 1] -> [offset + 1]
hexDigit = char:d (?[d >= $0] ?[d <= $9
[2[d >= $a] ?[d <= $f]
[?2[d >= $A] ?[d <= $F]) -> [d]
ident = "name"
mulExpr = mulExpr:x "*" primExpr:y -> [{#binOp. '*' v}l
| mulExpr:x "/" primExpr:y -> [{#binOp. '/'. vil
| mulExpr:x "$" primExpr:y -> [{#binOp. '%' vil
| selExpr
name = <letter letterOrDigit*>:n
-> [((Keywords includes: n)
ifTrue: [n asSymbol]
ifFalse: [n first isUppercase ifTrue: [#structName] ifFalse: [#name]])
number = " 0b'' <($0 | $1) (S_ | SO | $1)*>:n -> [#number -> (self numberFrom: n base:
| $0 <octDigit ($_ | octDigit)*>:n -> [#number -> (self numberFrom: n base:
| "70x'' <hexDigit ($_ | hexDigit)*>:n -> [#number -> (self numberFrom: n base:
| <digit ($_ | digit) *>:n -> [#number -> (self numberFrom: n base:

octDigit = digit:d ?[d >= $0] 2[d < $8] -> [d]

v}]

x. y}]

x. y}]

orExpr = orExpr:x "||" andExpr:y -> [{#binOp. '[||'. x. y}]
| andExpr

primExpr = primExpr:arr "[" expr:idx "]" -> [{#wordAt. arr. idx}]

| "args" "[" expr:idx "]" -> [{#wordAt. {#args}. idx}]

| primExpr:arr "@" expr:idx -> [{#byteAt. arr. idx}]

| primExpr:f " (" listOf (#expr. ','):args ")" -> [{#call. f}, args]

| "memory" "." "name":n ?[n = 'wordSize'] -> [{#memoryWordSize}]

| "memory" -> [{#memory}]

| "numArgs" -> [{#numArgs}]

| "name":n -> [{#name. n}]

| "number":n -> [{#number. n}]

| "charLit":c -> [{#number. c}]

| "!" primExpr:e -> [{#unOp. '!'. e}]

| "~" primExpr:e -> [{#unOp. '~'. e}]

| "string":s "->" primExpr:e -> [{#string. s. e}]

| "(" expr:e ")" -> [e]

| "structName":s "." "name":n ?[n = 'wordSize'] -> [{#structSize.

| "structName":s " (" expr:e ")" "." "name":n -> [{#structAt. s. e.
prog = topLevelStmts:ss spaces end -> [{#prog. {#compound. {#label. 'S$$'}.
relExpr = shiftExpr:x "<" shiftExpr:y -> [{#binOp. '<'. x. y}]

VPRI Technical Report TR-2010-004

s}]

n}]

ss}}]

28

| shiftExpr:x "<=" shiftExpr:y -> [{#binOp. '<='. x. y
| shiftExpr:x ">" shiftExpr:y -> [{#binOp. '>' . x. y}]
| shiftExpr:x ">=" shiftExpr:y -> [{#binOp. '>='. x. y
| shiftExpr
sc = spacesNoNl (exactly(Character cr) | &$} | end)
selExpr = primExpr:addr ":" expr:offset "#" expr:length -> [{#select. addr. offset.
| primExpr
shiftExpr = addExpr:x "<<" addExpr:y -> [{#binOp. '<<'. x. y
| addExpr:x ">>" addExpr:y -> [{#binOp. '>>'. x. y}]
| addExpr
space = “space | fromTo('//'. String cr) empty(Character cr) | fromTo('/*'. '*/")
spacesNoNl = (~exactly(Character cr) space)*
special = <
SC1LS)y st I 8T 1 8@ 1 s, | $: | S+ | " =>"" | §= | $* | 8/ | $% | ${ St
e e -1 A B S UL B S L B-E B> R S B 2
e I 2 L 2 e - H=F P B
>:s5 -> [s -> s]
stmt= "name":n ":" -> [{#label. n}]
| stmtNoLabel
stmtNoLabel = "{" stmts:ss "}" -> [{#scope. ss}]
| "if" expr:c "goto" "name":n -> [{#Jjnz. c. {#name. n}}]
| "unless" expr:c "goto" "name":n -> [{#Jjz. c. {#name. n}}]
| "goto" "name":n -> [{#Jmp. {#name. n}}]
| "if" expr:c stmtNoLabel:t ("else" stmtNoLabel | [{#skip}]l):e -> [{#if.
| "while" expr:c stmtNoLabel:s -> [{#while. c. s}]
| "break"™ -> [{#break}]
| expr:1l ":=" expr:r sc -> [{#assign. 1. r}]
| "var" 1listOf (#decl. ','):ds sc -> [{#compound}, ds]
| "print" expr:e sc -> [{#print. e}]
| "printb" expr:e sc -> [{#printb. e}]
| "printc" expr:e sc -> [{#printc. e}]
| "printo" expr:e sc -> [{#printo. e}]
| "printh" expr:e sc -> [{#printh. e}]
| "prints" expr:e sc -> [{#prints. e}]
| "newline" sc -> [{#newline}]
| "halt" sc -> [{#halt}]
| "clear" sc -> [{#clear}]
| structbDecl
| "return" expr:x sc -> [{#return. x}]
| "return" sc -> [{#return. {#number. 0}}]
| "eval" expr:e sc -> [{#eval. e}]
| expr:e sc -> [{#compound. e. {#pop}}]
| ";" -> [{#skip}]
stmts = stmt*:ss -> [{#compound}, ss]
string = $" <(~$" anything)*:s> $" -> [#string -> s]
structDecl = "struct" "structName":s
[(structs includesKey: s) ifTrue: [self error: 'duplicate decl for struct ', s]

[structs at: s put: Dictionary new
[0] :offset

"{" field(s. offset):offset ("," f
[d at: 'S$bitSize' put: offset]

-> [{#structDecl. s. d}]

tok = spaces (name | number | special | string | charLit)

token :tt = tok:t ?[tt = t key] -> [t value]

topLevelStmt = "func" "name":n " (" listOf (#ident. ',"'):formals (","? "...")?
-> [{#func. n. formals. body}]

| stmt

toplevelStmts = topLevelStmt*:ss -> [

VPRI Technical Report TR-2010-004

]:d

ield(s. offset):offset)* "}"

{#compound}, ss]

")" stmtNoLabel:body

length}]

c. t. e}]

29

Appendix 2: A Copying GC written in Nothing

struct OTE { ptr, numSlots } // struct for Object Table (OT) Entries
var ot = memory, // OT starts @ lowest valid address
otSize = 32 * OTE.wordSize, // max. number of objects
heapl = ot + otSize, // base addr. of 1lst heap
heapSize = (memory.wordSize - heapl) / 2, // num. words in each heap
heap2 = heapl + heapSize, // base addr. of 2nd heap (also addr of 1lst word after 2nd heap)
heap2Lim = heap2 + heapSize // addr of 1st word after 2nd heap
func withOtDo (f) { // This function maps f over all OT entries.

var ptr = ot
while ptr < heapl {

f (ptr)
ptr := ptr + OTE.wordSize
}
}
func initOTE (ote) { // initialize OT
OTE (ote) .ptr := 0
OTE (ote) .numSlots := 0

}
withOtDo (initOTE)

func oop2ote(oop) { return (cop >> 1) * OTE.wordSize + ot } // These functions translate between oops (indices into
func ote2oop (ote) { return ((ote - ot) / OTE.wordSize) << 1 } // the OT) and ptrs to their OTEs.

func mkInt (x) { return x << 1 | 1 } // Ints are tagged. These functions create an int object
func intVal (i) { return i >> 1 } // and extract value of an int object, respectively.

var freelList, heap = heap2, heaplim, heapPtr, otherHeapPtr = heapl
func fixFreeListHelper (ote) {

if OTE (ote) .ptr < heap || OTE (ote).ptr >= heapLim {
OTE (ote) .ptr := freelist
OTE (ote) .numSlots := 0
freelList := ote
}
}
func fixFreeList () { // Organize the free OTEs into a linked list so that alloc
freeList := 0 // doesn't have to scan the OT for free OTEs.

withOtDo (fixFreeListHelper)
}

func switchActiveHeap () {

heapPtr := otherHeapPtr
if heap == heapl { heap := heap2; heapLim := heap2Lim; otherHeapPtr := heapl }
else { heap := heapl; heapLim := heap2; otherHeapPtr := heap2 }
fixFreelist (
}
switchActiveHeap ()
func moveToOtherHeap (oop) { // This function recursively moves an object to the other heap
if oop & 1 // and updates its OTE to point to the new body.
return // (No need to do anything for ints.)
var ote = oop2ote (oop)
if OTE (ote).ptr < heap || OTE (ote).ptr >= heapLim // If this object's body is not in this heap, it's already been
return // moved, so we're done.
var ptr = otherHeapPtr // The new address of the object's body.
otherHeapPtr := otherHeapPtr + OTE (ote) .numSlots
var idx = 0 // Copy the object's slots to the new body.
while idx < OTE (ote) .numSlots {
ptr[idx] := OTE (ote) .ptr[idx]
idx := idx + 1
}
OTE (ote) .ptr := ptr // Update the object's OTE to point to the new body.
idx := idx - 1 // Recursively move this object's slots to the other heap. We start
while idx >= 0 { // at the bottom b/c "next" ptrs are usually the last inst var, and
moveToOtherHeap (OTE (ote) .ptr[idx]) // we want locality of reference.
idx := idx - 1
}
}
var root = mkInt(0) // An object is live iff it is reachable from this variable.
func alloc(n) { // This function allocates a new object with n slots and returns
var triedBothHeaps = 0 // its oop.
11:
if freeList == 0 || heapPtr + n > heapLim { // 1f the object doesn't fit, either b/c there are no free OTEs or
if triedBothHeaps // not enough memory for the object in this heap, GC and try again.

30

VPRI Technical Report TR-2010-004

halt // (1f we've already tried this, then the object doesn't fit -- ERROR!)

triedBothHeaps := 1
moveToOtherHeap (root)
switchActiveHeap ()
goto 11
}
var ans = freelist // Take the new object's OTE from the free list.
freelist := OTE (freelist) .ptr
OTE (ans) .numSlots := n
OTE (ans) .ptr := heapPtr // Make room for the object's body in the heap.
heapPtr := heapPtr + n
var idx = 0 // Initialize all of its slots to zero.
while idx < n {
OTE (ans) .ptr[idx] := mkInt (0)
idx := idx + 1
}

return ote2oop (ans) // Return the oop of the new object.

31

VPRI Technical Report TR-2010-004

	The two OMeta translators for Nile (as of 2009)
	
	
	DBjr is an organizer of LWorld “views” and “events”

