
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201   t: (818) 332-3001  f: (818) 244-9761 

 

 

 
 
 
 
 
 
 
 
 
 

 Programming and Programming Languages
 
 
 
 Alan Kay
 
 
 
 
 
 
 
 
 
 
 
VPRI Research Note RN-2010-001 

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.



 

  

 

Many thousands of programming languages have been designed and implemented in many 
styles. Too many for 45 minutes! So let’s look at a few styles starting with the Etoys language 
and environment made for 11 year olds. See Etoys, Children and Learning and Etoys Authoring 
and Media for some of the things I showed in the live demo. 

 

We can easily make thousands (millions) of objects and program them all at once. This shows 
that contagion can be delayed by changing the time constant (by having more or less villagers) 
but not eliminated. All the villagers eventually get sick and die. Being able to program 
“massively parallel” and easily is important. Be critical of languages that can’t do this easily. 

Alan Kay Class Notes For CS1 Lecture – UCLA – October 15, 2010 

VPRI Research Note RN-2010-001

http://www.vpri.org/pdf/rn2005001_learning.pdf�
http://www.vpri.org/pdf/rn2005002_authoring.pdf�
http://www.vpri.org/pdf/rn2005002_authoring.pdf�


 

  

 

Feedback and correction is a powerful idea. These two 11 year old girls came up with this nice 
program to always keep their programmable car on the road. Most systems use this idea whether 
biological or human made. 

 

This idea can be used to follow gradients. The salmon are “looking for dark”. The basic scheme 
is “if things are OK, keep going, otherwise do something random and keep going”. All life uses 
this, and so does evolution. And so does the Ethernet, and with a few more elements, so does the 
Internet. 

VPRI Research Note RN-2010-001



 

  

 

Ants are made efficient by food-carrying ants laying down a scent trail that other ants can follow 
upstream to quickly find the food and then go downstream to quickly find the nest. This is “loose 
coupling” between objects. The same idea can be used to program a text editor in just 35 lines of 
code. Point of view is worth 80 IQ points! 

 

The future of programming is not like most programming today. But will be more like making 
biological systems. The Internet is one of the few systems organized this way. It is the most 
scalable and robust human artifact on the Earth. 

VPRI Research Note RN-2010-001



 

  

 

Building blocks can be organized simply – with results that are like the building block – walls 
and pyramids are like piles and stacks. Many molecules are like atoms. Or, completely new 
much more powerful structures can be built that are not like the parts – arches and life – this is 
what we need to try to do when we design systems and programming languages! 

                                                    

The children’s programming environment is made from the very same simple materials as the 
toy cars they draw. And all is dynamic and “alive”. All interactive development environments 
for programming could be like this. If you are working with one that isn’t then you are working 
with a language and environment that have serious flaws! 

VPRI Research Note RN-2010-001



 

  

 

It is easy to make a simple interpreter, even in the children’s system. Here is an example of a 
rule-based language for controlling the particles doing the epidemic example. All the scripts 
needed are on the right. 

 

Here is the situation of the previous “slide”. The blue “noise” are the bits in the main memory of 
the computer. This presentation is actually given in the children’s system, where the new 
interpreter we just made is built on the Etoys system which is built from Smalltalk, which runs 
on a virtual machine made for Smalltalk that ultimately runs on i86 machine code which is 
interpreted by microcode running in the CPU with simple logic. 

VPRI Research Note RN-2010-001



 

  

 

A good question from a CS1 student! 

 

Val Shorre at UCLA in 1963 noticed that the mathematical expression of a higher level 
programming language could itself be turned into a programming language. The circled line of 
metalanguage is equivalent to the procedure on the right. 

VPRI Research Note RN-2010-001



 

 

  

 

This allows “grammar programming” by adding the stuff in red and writing an interpreter for it. 
This can be run as a program (starting in the upper left corner of the code) via mostly doing 
function calls until some concrete symbol in the grammar can be compared with the input. Here 
“a” has been matched, and the output statement has just put out the first line of the machine code 

 

 

A real example is drawn from a project to go from millions of lines of code to hundreds by 
inventing new languages. Here’s a new math for rendering in 40 lines, and the math in a 
programmable language called Nile in 80 lines. The language automatically deals with streams 
of points and pixels with mathematical transformations of coordinates and signal processing. 

VPRI Research Note RN-2010-001



 

  

 

We need a few more things: to compose separately rendered things – there are about 26 of these 
standardly used – sampling of bit maps for scaling – and pen stroking. All these plus rendering 
can be expressed in just 318 lines of code in Nile. 

 

But we have to make Nile, and this can be done in the OMeta language (that is a big brother of 
the Val Shorre example previously). Dealing with the surface structure of Nile takes about 130 
lines of code, and creating optimized output (we like graphics to run quickly) takes about 700. 
The “target” is a “symbolic computer” - “Nothing” - that only has operations like a simple CPU. 

VPRI Research Note RN-2010-001



 

  

 

And we have to make our target machine language “Nothing”. This takes about 100 lines of the 
OMeta language. 

 

And we have to make OMeta itself. This takes about 100 lines of code. There are a few more 
lines of code required (not shown), but this shows how a completely “from the metal” system 
can be made in a few thousands of lines of code rather than millions as with the commercial 
versions without losing any of the actual functionality. In other words: “Math Wins!” 

VPRI Research Note RN-2010-001



 

 

You must ask questions and “be critical via knowledge”  -- that is, learn a lot and try to gain 
perspective on what people are trying to get you to learn. A lot of it might not be a good idea any 
more (and some of it might never have been a good idea!) 

VPRI Research Note RN-2010-001




