ilewpoints Rese

rch Inst

{
Q)
P

Programming and Programming Languages

Alan Kay

VPRI Research Note RN-2010-001

This material is based upon work supported in part
by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Alan Kay Class Notes For CS1 Lecture - UCLA - October 15, 2010

Programming
and

Programming Languages

Many thousands of programming languages have been designed and implemented in many
styles. Too many for 45 minutes! So let’s look at a few styles starting with the Etoys language
and environment made for 11 year olds. See Etoys, Children and Learning and Etoys Authoring
and Media for some of the things | showed in the live demo.

O villager move 1 normal ® B8
villager forward by : 1,
villager turn by { random ($10: }{- {random ({10+)«

QO villager do | normal 6 B

villager move

Test villager's Vicolor seesBcolor

Yes villager's color + Mcolor
No

KedamaWorld's villagers = 1000
Villagesetup ~ Villagego \illage clearit

KedamaWorld stopit person back

We can easily make thousands (millions) of objects and program them all at once. This shows
that contagion can be delayed by changing the time constant (by having more or less villagers)
but not eliminated. All the villagers eventually get sick and die. Being able to program
“massively parallel” and easily is important. Be critical of languages that can’t do this easily.

VPRI Research Note RN-2010-001

http://www.vpri.org/pdf/rn2005001_learning.pdf�
http://www.vpri.org/pdf/rn2005002_authoring.pdf�
http://www.vpri.org/pdf/rn2005002_authoring.pdf�

O werid car scriptl | (ticking & B

Test werid car's licolor sees licolor
Yes werid car forward by 5
No

Test werid car's licolor sees lcolor
Yes werid carturn by {4,
No

Test werid car'slicolor sees color

Yes werid carturn by $-4»
No

Feedback and correction is a powerful idea. These two 11 year old girls came up with this nice
program to always keep their programmable car on the road. Most systems use this idea whether
biological or human made.

salmen start Environment birth O plotter followSalmon | paused & H
g T 3 5 lotter's { x +plotter's myFish x»
salmonsetup Envir reset E 2 y
~ plotter's {y + plotter's myFish y»
© salmon sniffDarker | iticking =B
salmon forward by | 5
Test s lasts > s b |
Yes

salmon turn by random | 90+ '1: m i
O salmon animate | ticking & B
Holder's { cursor increase by | 1.00:

salmon turn by random | -90

s bl eali ‘s

salmon look like Holder's playerAtCursor

This idea can be used to follow gradients. The salmon are “looking for dark”. The basic scheme
is “if things are OK, keep going, otherwise do something random and keep going”. All life uses
this, and so does evolution. And so does the Ethernet, and with a few more elements, so does the
Internet.

VPRI Research Note RN-2010-001

"Particles and Fields"

7 Rules for Layout = —-25 LOC

e % ol p" g
L r n.g Ml i< [
1 ‘-a\‘ﬁ;:inliu-. ‘:t‘\t : 1}4]]
L Aaf B fa g o
o ut e l:. t: . 4)1 R :-L.s A
i ks o

Ants are made efficient by food-carrying ants laying down a scent trail that other ants can follow
upstream to quickly find the food and then go downstream to quickly find the nest. This is “loose
coupling” between objects. The same idea can be used to program a text editor in just 35 lines of
code. Point of view is worth 80 1Q points!

The future of programming is not like most programming today. But will be more like making
biological systems. The Internet is one of the few systems organized this way. It is the most
scalable and robust human artifact on the Earth.

VPRI Research Note RN-2010-001

Building blocks can be organized simply — with results that are like the building block — walls
and pyramids are like piles and stacks. Many molecules are like atoms. Or, completely new
much more powerful structures can be built that are not like the parts — arches and life — this is

what we need to try to do when we design systems and programming languages!

O child Painting vE+
| O search
O ~scripts
normal

| child Painting scriptl
1 child Painting seript2
Child Painting empty script

mouselp

w
i Bis
15
H
555:»!
ggea’a
]
a L e A
frggics
O=- 6ibi5
66 0 S
O ~tests
Test Yes No

Child Painting's Micolor seesBMcolor
Child Painting’s is over color Mcolor
B child Painting's is under mouse false |
B child Painting’s obtrudes false
Child Painting's overlaps dot
Child Painting's overlaps any dot
Child Painting's touches a dot

The children’s programming environment is made from the very same simple materials as the
toy cars they draw. And all is dynamic and “alive”. All interactive development environments
for programming could be like this. If you are working with one that isn’t then you are working

with a language and environment that have serious flaws!

VPRI Research Note RN-2010-001

O Rules eval | paused @ B
Rules's | cursor increase by | 1+
Repeat Rules's count: times
Rules's player at cursor eval
Rules's | cursor increase by | 1+
Village's { cursor increase by £ 1»

© ARule eval | normal| ¢ B

ARule's {cursor = {1/

ARule's player at cursor eval

;m.&'s holds -
ARule's {cursor +$3)

Yes
ARule's player at cursor eval

No
._<' ¥ O canMove eval | nomal @ B
-. L CanMove's holder holds + | true

5 _E, tlg’ R*g. O Move eval | romal & B

Reset | Rebuild

Village's player at cursor move

Ky
IE Q . O TouchRed eval 1 ' normal w B8

Test Village's player at cursor lcolor sees Bcolor
®o

Yes TouchRed's holder holds + | true

No TouchRed's holder holds « false

O MakeRed eval 1 normal 5 B8
Village's player at cursor look like redCostume

It is easy to make a simple interpreter, even in the children’s system. Here is an example of a

rule-based language for controlling the particles doing the epidemic example. All the scripts
needed are on the right.

Parallel Particle
Interpreter Machi

Etoys Interpreter
Machine

Smalltalk
System

Smalltalk
Byte-Coded
Virtual
Machine

Here is the situation of the previous “slide”. The blue “noise” are the bits in the main memory of
the computer. This presentation is actually given in the children’s system, where the new
interpreter we just made is built on the Etoys system which is built from Smalltalk, which runs
on a virtual machine made for Smalltalk that ultimately runs on i86 machine code which is
interpreted by microcode running in the CPU with simple logic.

VPRI Research Note RN-2010-001

Virginia Pham CS1:

... how can something you type be
decoded into machine language, and how
does the computer know what to do?

A good question from a CS1 student!

A typical CPU can do a Tt 15
e few things pretty quickly EE w rl,a
lml fetch, fetchlil, store, storeli] oflw 12, b
ROMRRRLE | 4, -, *, | lw r3, tcd2

a:g::,tor add rl,r2,rl

shi

jump, if ... jump, jump-linked =0 rL, ans
1963: Val Schorre at UCLA
Istatement = destVar ":=" expression |
expression = product "{"+" product} Idef product

|product = primary “{"*" primary} i—) if primary
primary = npumber then
| sourceVar repeat
| "(" exp ")" if peekSymbol("*")
then nextSymbol;
destvar = identifier if primary then continue;
v = identifi else return false
lsourceVar = identifier Blalratir e
end repeat
identifier = letter "{ letter | digit } else return false
number = digit "{ digit }
|EttEI‘ = llalllIlblllllcllllldulllellIlflllllgllIllhlllllillllljIllllkllIllllllllmlllllnll
[0 " [P s e e w2

digit = MOM[MLY 20 3 45 "6 7" 8" 9" .

Val Shorre at UCLA in 1963 noticed that the mathematical expression of a higher level
programming language could itself be turned into a programming language. The circled line of
metalanguage is equivalent to the procedure on the right.

VPRI Research Note RN-2010-001

A typical CPU can do a
‘m few things pretty quickly

m‘ fatch, fetch[il, store, store[i]

o |+, -, *, / Z

—b ans:=a+b*42
and, or

shift
jump, if ... jump, jump-linked

1963: Val Schorre at UCLA

|statement :: destVar:a ":=" expr I::) out("sw rl, " - a)

expr i+ product *["-I—" product |:> out("add r"-s-1-",r"-s-",r"-s-1); s := s-1}
product i: primary *{“"" primary |:> out("mul r*-s-1-",r":s-" r"-s-1); s := s-1}
primary i number

| sourceVar

(" exp)"

destVar ii identifier

lsourceVar :: identifier:a > si=s+l; out("lw r"-s-","-a)

identifier :: letter:a *{ (letter | digit:b = a:=a-b }
number :: digit:a '{ digit:b IZD a:=a‘b } |:‘> Aal="tc": a
letter R L R e e B R T T T ey

[0 " p " g" [r s e U v Wy

digit 1MOMM1Y[M2""3" 4" "5 6" |" 7] 8" |"9"

This allows “grammar programming” by adding the stuff in red and writing an interpreter for it.
This can be run as a program (starting in the upper left corner of the code) via mostly doing
function calls until some concrete symbol in the grammar can be compared with the input. Here
“a” has been matched, and the output statement has just put out the first line of the machine code

Math Wins!
(especially MetaMath)

P z Nile: « ts Christopher Strachey”
Dan Amelang Renderlng en meets F achey’

toler I v g, W Render' (s 3 Smpler, ¢ s Cowas) ¢ EdgeContribution =]

Palxt I &I, w b
Matrks < [bty b8, 1] = Filletweeatidges (p) =
Bezler < fa, b, ¢ Nint] Interleave [{reatrsamlepsdats (p + .3 = 5, 1] =
Edgelaatrbetion < [p ¢ Pedat, w, A € ip+ 0.5
Sampler 1o Pulst w» Caler Render (s ¢ Sampler, ¢ 1 Camvas) ¢ Edgelortridetice »=|
Compiniter 1 Yot D001 [scem ke o Tou i1he coameen commercaal Ty =l
examples and opeming systems require 105 of
Mom

b = Berier

i ¢ M« p ¢ painth s o milbons w0 100 of s of lies of code).
[0 ® Bt = ot % fu = We ask “How comples. i this really? Could
b npa s v gy o |acove markematics be imvented 1o represent dhe g
K of] er == Bezler
Q:+ P: fompositesanplers (s 1 SapY the end-user down w the metal™
o(FQ) = (Qy-F)z+1- T} N L= 1l e ochace i o it oy

miforetar (3 falec & sqonens of magnisade sealler! A fow *100s of
Sl Maxwells Equations’ T-sbirts” va. 10 af

e |
35 16,8, £ % cor, Millans of pages of code!

s b |
¥ P) = min(z+ 1, maz{z, F)), l-rn:'n;r 1 Compasiter
min(y + 1, maz(y, Py)) > asbeflea
Tstart v Pairt] 1 Lége s Rl x I <1
¥ sury | <81
loal = 8 A7 [max Fieearmax)? abbe |
1 moes becocl
Wik = Eh[m')t Py "::"i'a:i ‘“n ribating
m(y(P)e — Pe) ~ F, raze sieid
Roal’ = Lol sw o b
else wEpasL-ge - aal
Tocal =t b e b hEoyeay
- I hocal |« 1 = Ip. w Al
coerage(AB) = oA AWAN+ | yaits I 15 C s e
o) (B = | Zi o gt
a(y(w(B)), 1 B)) Creaebapleuins (tar 1 ot} 1 el > ot et A
¥ = starty n = min feearnind? [y Plnearnaz)? ashcl
rm'ullzr.m'e'myv[m.}i.ll 'S rai s thesl e beted
eyl

"The Formula"

"The Formula" in Nile (~81 LOC)

A real example is drawn from a project to go from millions of lines of code to hundreds by
inventing new languages. Here’s a new math for rendering in 40 lines, and the math in a
programmable language called Nile in 80 lines. The language automatically deals with streams
of points and pixels with mathematical transformations of coordinates and signal processing.

VPRI Research Note RN-2010-001

Nile Features

Dan Amelang

Jeit Amelang
Compositing o
The 26 compositing ops
e 15

used by Flash/5VG,
CoreGraphics, WPF

90 LOC

Antialiased Vector Graphics Rendering
~=Flash/5VG, CoreGraphics, WPF
81 LOC

Sampling
For scaling and transforming
bit-map graphics, PNGs, etc.
71 LOC

'‘en Stroking
-
For >
3 types of caps and 3 joins
76 LOC

Nile Total 318 LOC ‘ A

We need a few more things: to compose separately rendered things — there are about 26 of these
standardly used — sampling of bit maps for scaling — and pen stroking. All these plus rendering

can be expressed in just 318 lines of code in Nile.

Math Wins!
(especially MetaMath)

ey ok Pl Tramdorm ASTs

Parser ~130 LOC

& ol conea (pa) . rotecm Tumctiamion. 3]

I

F i S

But we have to make Nile, and this can be done in the OMeta language (that is a big brother of
the Val Shorre example previously). Dealing with the surface structure of Nile takes about 130
lines of code, and creating optimized output (we like graphics to run quickly) takes about 700.
The “target” is a “symbolic computer” - “Nothing” - that only has operations like a simple CPU.

VPRI Research Note RN-2010-001

Using OMeta to make

Hey Alex, what did you opimnls
make progress on today? i fast
Oh, Nothing ...

Wow, that's really great!

Alex Warth

Nothing Parser ~100 LOC

i Lont = i age *o it apey
| s ey
(e

fecioign = igtat M »= 10 5 < 18]

rwes -(m‘l' ety
fondomr = sl ape s bk BORL RS Y
| bt

htinatp: = satndliers " sglapry

—nm-m?wm i

ik aps = il agrs “ma” rlagey
| s "1 ey
I itpr

oo = e

ok 2 witnt = “marmen 1" “mumber” | (12114

Tfmucty st uist e = et npacen ens

[Mllﬂhlﬂlm'\hﬁ(ﬁm i st]

i foitnes = shivtapes “x* shiapry
l.ﬂw‘(-’aﬂ!lﬂ‘!

excigt = chard [7d > 45174 <= 5] [k,

71 == $al d <= W1}
71w] Bl 391

firensiabirea
|

frarre = il 1B g e

prniape = asiEapre *x ot stdlapry

| bt
% n.—-m || mm.f 7 o 25 ok s P Ve A

o = 2t <tia 1) 3011 P il
I

|eatmmr P St o = wotter]
| ey
it nt = baegape e T T Ly o 1mhamen
e |*rarmtsern
| "t
vt apr = BN apr " BEAE 17 prntxprn
| b e ie="

Lar e
100 e ot v e et e sl

fresiog = ol apes "+ pamEy b = s eumens enactiptCharacton cry |) o,
| xpra 7 pmgapry [£2
| s " primE Ty
|t bt g = et * el “4° expesength
Iprimber

fr m.g Py The sl boe aanifont

feecial =
umlulurwll.n L T

Bt e L e e Bt L Rt B S L E
| s-arissrE =i s

haruciect = “atruct “strucinumes
Ll

ey
[siruets ot 4 pr: Gictiunary newls
mm

{ S, ffuntiosTust [=* R ofTasticthiatr 1"
14 ot SpitSan pat: ctaet]

ok = sesces bnaem | i | i)

fokoen 4t = 1okt it = ¢yl T

OMeta language.

And we have to make our target machine language “Nothing”. This takes about 100 lines of the

OMeta Parser ~76 LOC

arser =i Parser |
Tomte w1y .mm i-seaiyl chari® wemlyl.
snrifupacel | Trmbee 17",) | Troasag* i, ol

- . jaind),
]

)
e, Cben ekl iereprtirieg]
e
s .t et i 1],
v, “enactly, sign o o, dobat 1),

R ——
PereigreE Kiramlatar . tram. r.

rélt-

o —
et o,

= [e, o, 0t Teale. 1700,] oot imnh].
o [hnd, 32, 831
ey

=
dhll—t Ilul m Anah.
et F. dichomtibn
Trem LR ek eri] ettt
|
i+ Tramcn elow
o] 16 oot [l
M et » 1 del] i
Wy tramie Wy, al.
el e W, al
e (R
R Ime, el
Limbmand (1t 0 I Lokibass, ol
[e e
Ruls rase i trawbady s e, rase, by, bodil

ol nptinssation. inktialiie = famction | § his, WliSamething « falie |

[
foscts erattinime

el 2.
-

Arazsabge 11 = bu-umu Rl h)) (reeEReE)

> 1o concattan),

o et
ArmeaEraleeitn inl.u-urrm

!
= bt o i
Cptimsmn - ir e G

2 irasma, . sad. oo
sasiacion, meptisi, FiErEt

And we have to make OMeta itself. This takes about 100 lines of code. There are a few more
lines of code required (not shown), but this shows how a completely “from the metal” system
can be made in a few thousands of lines of code rather than millions as with the commercial
versions without losing any of the actual functionality. In other words: “Math Wins!”

VPRI Research Note RN-2010-001

Take Aways About Programming Languages
I

As with mathematics,

there are many powerful programing styles
So:

Learn 3-10 different kinds of

programming languages before drawing
conclusions!

And ...

As with mathematics,

there are many not yet invented powerful styles
So:

Learn how to design and make new
programming languages!

You must ask questions and “be critical via knowledge” -- that is, learn a lot and try to gain

perspective on what people are trying to get you to learn. A lot of it might not be a good idea any
more (and some of it might never have been a good idea!)

VPRI Research Note RN-2010-001

